Nitrogen in Crop Production: Agronomics and Economics

Nitrogen Science Summit Madison, WI March 28, 2014

Carrie Laboski

Road Map

- Importance of N in crop production
- Developing N application rate guidelines
 - Influence of soil N supply
 - Influence of hybrid
- Meeting N needs with manure and legumes
- Relationship between N fertilizer application rate and residual N
- Summary

Road Map

- Importance of N in crop production
- Developing N application rate guidelines
 - Influence of soil N supply
 - Influence of hybrid
- Meeting N needs with manure and legumes
- Relationship between N fertilizer application rate and residual N
- Summary

Importance of N for plant growth

- Function in plant
 - Component of amino acids
 - Essential for cell division & plant growth
 - Basic component of chlorophyll
 - Necessary for enzymatic reactions
 - Component of nucleic acids

Especially for non-leguminous crops

2013 acreage of major crops requiring N in WI

Crop	Acreage
Corn (grain + silage)	4,030,000
Winter wheat	265,000
Oats	105,000
Potatoes	65,000

Source: USDA-NASS

N fertilizer consumption in WI (2002-2012)

Includes all agricultural and non-agricultural fertilizer and fertilizer material (excluding fillers and secondary and micronutrients) in which N-P-K was reported. Source: WI DATCP

Road Map

- Importance of N in crop production
- Developing N application rate guidelines
 - Influence of soil N supply
 - Influence of hybrid
- Meeting N needs with manure and legumes
- Relationship between N fertilizer application rate and residual N
- Summary

Determining Fertilizer N Need

Equation seems easy, but is difficult in practice

Relationship between N applied and corn yield achieved in WI at the EONR_{0.10}

Based on the 2012 MRTN database (1995-2011)

Crop response to N fertilizer

- The Economic Optimum N Rate (EONR) is the N rate at which profit from N fertilizer is maximized
 - EONR will vary with prices of N and corn

10

N rate guidelines for corn: Maximum Return to N (MRTN)

- Uses a statewide database
 - Many soil types
 - Numerous counties
 - Many hybrids (traited and untraited)
- Based on <u>replicated</u> N response trials
 - Small plot and field strip
 - Where N was managed well
- Based on economics
 - Allows for fluctuating prices & risk tolerance
- Same basic philosophy used in:
 - MN, IA, IL, IN, MI, OH

Definition of soil yield potential (YP)

 The relative ranking of a soil's ability to produce high corn yields along with the responsiveness of corn yield to nitrogen (N) fertilizer

Soil yield potential (YP)

- All sandy soils are low (sandy YP)
 - the upper 8 inches has a weighted average sand content greater than or equal to 75%,
 - 2. the subgroup or great group contains "Psam" and the weighted average sand content in the upper 8 inches is 65% or more, or
 - 3. the taxonomic particle size class matches sandy, and the weighted average sand content in the upper 8 inches is 65% or more
- Organic soils
 - High YP, if mesic
 - Medium YP, if frigid

Soil yield potential (YP)

- Loamy soils are medium or high YP
 - Defined by soil properties
 - If at least one of the properties is limiting, then the soil is medium YP

Soil Property	Interpretation that limits YP to medium
Drainage class	excessively drained somewhat excessively drained poorly drained very poorly drained
Available water in the top 60" of soil	Very low (< 3 inches) and low (3–6 inches)
Depth to bedrock (lithic contact)	<30"

Removing a limitation will place the soil in the high YP category

Additional criteria for loamy soil YP

 If a soil's location has, on average, <2100 GDD, it should be considered medium YP regardless of soil property limitations

 In the shaded transition area, if no limitation to YP, then growers & agronomists should choose the most appropriate YP based upon experience

Average accumulated (May 1 to Sept. 30) growing degree day (GDD) isolines for Wisconsin, 1997-2011. http://www.soils.wisc.edu/uwex_agwx/thermal_models

N:Corn Price Ratio Table

Price of Corn (\$/bu corn)

		3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00	5.25	5.50	5.75	6.00
	0.20	0.07	0.06	0.06	0.05	0.05	0.05	0.04	0.04	0.04	0.04	0.04	0.03	0.03
	0.25	0.08	0.08	0.07	0.07	0.06	0.06	0.06	0.05	0.05	0.05	0.05	0.04	0.04
	0.30	0.10	0.09	0.09	0.08	0.08	0.07	0.07	0.06	0.06	0.06	0.05	0.05	0.05
Î	0.35	0.12	0.11	0.10	0.09	0.09	0.08	0.08	0.07	0.07	0.07	0.06	0.06	0.06
	0.40	0.13	0.12	0.11	0.11	0.10	0.09	0.09	0.08	0.08	0.08	0.07	0.07	0.07
of N* (\$/Ib	0.45	0.15	0.14	0.13	0.12	0.11	0.11	0.10	0.09	0.09	0.09	0.08	0.08	0.08
of N	0.50	0.17	0.15	0.14	0.13	0.13	0.12	0.11	0.11	0.10	0.10	0.09	0.09	0.08
Price	0.55	0.18	0.17	0.16	0.15	0.14	0.13	0.12	0.12	0.11	0.10	0.10	0.10	0.09
Ā	0.60	0.20	0.18	0.17	0.16	0.15	0.14	0.13	0.13	0.12	0.11	0.11	0.10	0.10
	0.65	0.22	0.20	0.19	0.17	0.16	0.15	0.14	0.14	0.13	0.12	0.12	0.11	0.11
	0.70	0.23	0.22	0.20	0.19	0.18	0.16	0.16	0.15	0.14	0.13	0.13	0.12	0.12
	0.75	0.25	0.23	0.21	0.20	0.19	0.18	0.17	0.16	0.15	0.14	0.14	0.13	0.13

^{*}Price of N = $[\frac{100}{\%} \text{ N in fertilizer}] / 2000$

Corn N rate guidelines: Maximum Return to N (MRTN)

Several footnotes - important to read them!!!

Must still take N credits for forage legume, legume vegetable, green manure and animal manure

Effect of N:corn price ratio on MRTN

As N:corn price ratio decreases (lower cost N and/or higher value corn), MRTN rate increases

Effect of price level on MRTN

As price level increases:

- MRTN does not change
- Range in profitable N rates narrows

MRTN rate guideline for wheat

University of Wisconsin Nitrogen Guidelines for Wheat		N:Wheat Price Ratio (see table on other side to determine ratios)					
		Wiledt	0.050	0.075	0.100	0.125	
Soil Group	Previous Crop	PPNT (Ib NO ₃ - N/a)		lbs N/acre (t	otal to apply)¹		¹ On loamy soils with < 2% organic
	Corn	< 50 <u>or</u> no PPNT	75 65 85	70 55 80	60 50 70	55 4065	matter, add 30 lb N/a to all rates. On soils with more than 10% organic matter, reduce rates by
LOAMY		51 to 100	45 35 55	40 30 50	35 25 40	30 2035	30 lb N/a. ² If the PPNT is < 50 lb N/a, use the
LOAMIT		> 100	0 0 0	0 0 0	0 0 0	0	top end of the profitable range; if the PPNT is 51 to 100 lb N/a, use
	Soybean, small grain	All results ² <u>or</u> no PPNT	55 45 65	50 40 60	45 35 50	40 35 45	the bottom end of the profitable range; if the PPNT is > 100 lb/a, no additional N is needed.
SANDY	All crops	PPNT is not recommended on sandy (sand and loamy sand) soils.	105 95 115	100 95 110	90 80 100	85 7095	See otherside for more guidelines.

Soil spatial variability can influence EONR

Arlington ARS

2013 Both sites high yield potential

Effect of corn hybrid on N use efficiency (NUE)

In Wisconsin, soil N's contribution to yield is significant!!

	HYPS Corn	MYPS Corn	HYPS Soybean		Irrigated Sands	Non-Irrg Sands
Relative Yield, %	59	61	73	83	43	52

Effect of N rate and year on partial factor productivity (PFP) and agronomic N fertilizer efficiency (AFNE) for hybrid 4

$$ANFE = (Yield - Yield_0) \div N rate$$

- Stars represent the NUE parameter at the EONR
- ANFE is a better measure of NUE (effect of fertilizer alone)

Effect of hybrid and year on partial factor productivity (PFP), agronomic N fertilizer efficiency (AFNE), and fertilizer N recovery efficiency (FNRE) at the EONR

Hybrid	PFP			ANFE			FNRE		
	2008	2009	2010	2008	2009	2010	2008	2009	2010
	bu/ lb N			Δ bu/ lb N			Δ lb N uptake/ lb N		
1	1.37	1.28	1.37	0.45	0.63	0.73	0.63	0.66	0.74
2	1.54	1.33	1.53	0.61	0.63	0.90	0.50	0.65	0.91
3	1.77	1.17	1.43	0.63	0.54	0.53	0.61	0.57	0.73
4	1.31	1.22	1.93	0.42	0.65	0.76	0.53	0.62	0.78

PFP = Yield ÷ N rate

 $ANFE = (Yield - Yield_0) \div N rate$

FNRE = $(N Uptake - N Uptake_0) \div N rate$

27

NUE is not simple

- How it is defined will impact interpretation
- Effected by:
 - Hybrid/traits
 - Soil
 - OM content
 - N mineralization potential
 - Environmental conditions for N mineralization
 - Weather
 - Conditions for N loss (eg excessive rainfall shortly after N application)

Road Map

- Importance of N in crop production
- Developing N application rate guidelines
 - Influence of soil N supply
 - Influence of hybrid
- Meeting N needs with manure and legumes
- Relationship between N fertilizer application rate and residual N
- Summary

On-farm N sources

- What are they?
 - Manure, Forage legumes, Leguminous vegetables,
 Green manures
- N in these materials can be in both inorganic and organic form
 - Organic forms need to decomposed before they are available for plant uptake
- The fertilizer bill can be reduced when N credits from on-farm sources are properly accounted for

30

Nutrient Availability Coefficients

N

-Time to incorporation--

	> 72 hours or not incorporated	1 to 72 hours	< 1 hour or injected	2.5	2	
First-year availability			% of total			
Beef: liquid (≤ 11.0% DM) ^a	30	40	50	80	80	55
Beef: solid (> 11.0% DM)	25	30	35	80	80	55
Dairy: liquid (≤ 11.0% DM) ^a	30	40	50	80	80	55
Dairy: solid (> 11.0% DM)	25	30	35	80	80	55
Goat	25	30	35	80	80	55
Horse	25	30	35	80	80	55
Poultry (chicken, duck, and turkey)	50	55	60	80	80	55
Sheep	25	30	35	80	80	55
Swine	40	50	65	80	80	55
Veal calf	30	40	50	80	80	55
Second-year availability			% of total			
All species	10	10	10	0	0	10
Third-year availability			% of total			
All species	5	5	5	0	0	5

Multiply Total N content of manure by coefficient to obtain estimated N availability

K,0

P,0,

^a If dry matter (DM) is < 2.0% and NH₄-N is > 75% of total N, the following equation for first-year N availability may be used in an effort to better account for the high concentration of NH₄-N that may be found in these manures: first-year available N = NH₄-N + [0.25 x (Total N – NH₄-N)], assuming manure is injected or incorporated in < 1 hour.

Estimated 1st year Nutrient Availability

	Tir	n	PΛ	K ₂ 0	S	
	> 72 hours or not incorporated	1 to 72 hours	< 1 hour or injected	P ₂ 0 ₅	K ₂ O	
Solid manure			-lb/ton			
Beef	3	4	5	6	10	1
Dairy: semi-solid (11.1–20.0% DMb)	2	2	3	3	5	1
Dairy: solid (> 20.0% DM)	2	3	3	3	6	1
Goat	3	4	5	6	8	1
Horse	2	3	4	5	6	1
Poultry: chicken	24	27	29	35	26	2
Poultry: duck	6	7	7	8	7	1
Poultry: turkey	26	28	31	35	25	2
Sheep	5	6	7	7	19	1
Swine	7	9	12	10	8	1
Liquid manure			lb/1000 gal			
Beef	5	6	8	6	12	1
Dairy: liquid (< 4.0% DM)	4	6	7	3	11	1
Dairy: slurry (4.1—11.0% DM)	7	10	12	6	17	1
Goat	4	5	6	6	15	1
Poultry	6	7	7	6	7	1
Swine: finish (indoor pit)	17	22	28	14	22	2
Swine: finish (outdoor pit)	7	9	12	6	8	1
Swine: (farrow-nursery, indoor pit)	8	10	14	6	10	1
Veal calf	3	4	4	2	13	1

^a These estimates are based on the typical total nutrient contents of manures tested in Wisconsin (Table 9.2) multiplied by the estimated first-year nutrient availability (Table 9.1).

^b DM = dry matter

Forage legume N credits

	Medium-/fine-textured soils		Sands/loa	amy sands	
Crop/stand density	>8"regrowth	< 8" regrowth	> 8" regrowth	< 8" regrowth	
First-year credit		lb N/a	to credit		
Alfalfa					
Good (70–100% alfalfa, > 4 plants/ft²)	190	150	140	100	
Fair (30–70% alfalfa, 1.5–4 plants/ft²)	160	120	110	70	
Poor (0–30% alfalfa, < 1.5 plants/ft²)	130	90	80	40	
Red clover, birdsfoot trefoil		80% of alfalfa cred	dit for similar stands		
Vetch	160	90	110	40	
Second-year credit	lb N/a to credit				
All crops, good or fair stand	50	50	0	0	

Road Map

- Importance of N in crop production
- Developing N application rate guidelines
 - Influence of soil N supply
 - Influence of hybrid
- Meeting N needs with manure and legumes
- Relationship between N fertilizer application rate and residual N
- Summary

Relationship between excess N fertilizer applied to corn and 0-3' end-of-season (fall, residual) soil nitrate content

Plano silt loam, Arlington, WI Andraski et al., 2000

35

Relationship between excess N fertilizer applied to corn and 0-3' end-of-season (fall, residual) soil nitrate content

EONR = **E**conomic **O**ptimum N Rate

University of Wisconsin-Madison

6 sites in Missouri

Relationship between excess N fertilizer applied to corn and 0-3' end-of-season (fall, residual) soil nitrate content

N:corn price ratio = 0.12

Hong et al., 2007

Relationship between 0-3' end-of season (fall, residual) soil nitrate content and soil water nitrate concentrations the following April

Plano silt loam, Arlington, W Andraski et al., 2000

Bottom line:

Reducing over application of N is a key step in reducing the potential for excess N loss

Road Map

- Importance of N in crop production
- Developing N application rate guidelines
 - Influence of soil N supply
 - Influence of hybrid
- Meeting N needs with manure and legumes
- Relationship between N fertilizer application rate and residual N
- Summary

Summary

- N is required for sustainable crop production
- Supplying N (fertilizer, manure, legumes) at economically optimum N rates reduces potential for N loss to the environment
- Selecting an appropriate N is not easy
 - Crop N need varies with hybrid & environment
 - Soil N supply varies with OM, soil N mineralization potential
 - N availability from manure & legumes varies
- After a N rate is selected, then N must be managed to reduce the potential for N loss

Thank You!

Carrie Laboski 608-263-2795 laboski@wisc.edu

www.NPKetc.info www.soils.wisc.edu/extension http://ipcm.wisc.edu

NPKetc

