

Nitrogen use and trade-offs on dairy farms: An illustration of complexity

What complexity?

 Biological systems are limited in N use

 Major portions of agricultural N inputs are lost to the environment

 Nitrogen loss pathways are diverse

There are tradeoffs in N use,
 N conservation and N loss

Outline

- 1. Nitrogen use efficiency (NUE) in dairy production
 - a. Whole-farm NUE
 - b. Feed NUE
 - c. Manure NUE
- 2. Trade-offs in N use, N conservation and N loss
- 3. Summary points

1. Nitrogen use in dairy production

Nitrogen | Nitrogen | 1. NUE | 2. N balance

Farm components
Whole-farm
Whole-

Watershed

Geographic (county, state, region, country)

Important components of NUE

- 1. Biological limits to incorporate N into products
- 2. Fixed physical and operational farm features
- 3. N applications to avoid risk
- 4. Excessive N use (wastage)

Fact of life (not very manageable)

Somewhat manageable

Somewhat manageable

Manageable

Feed N use efficiency in global dairy production systems

Typical range of feed N intake and feed NUE

Europe and USA

Feed N intake (g/cow/day)	Feed NUE (%)	Source
750 to 200	21 to 32	Castillo et al., 2000
628 to 289	22 to 29	Kebreab et al., 2001
897 to 496	21 to 36	Chase, 2004
666 to 512	26 to 33	Powell et al., 2006

What happens to N excreted in manure?

- Lost as ammonia (20-40%)
- Taken up by plants (20-40%)
- Lost via nitrate leaching (10-20%)
- Lost via denitrification (3-5%)
- Immobilized in soil (not much)

Whole-farm NUE

When carrying capacity is exceeded

Too many cows
....too much manure

Volatilized N (kg/ha/y) 84

26 34 47

26 34 47

Leached N (kg/ha/y) 59

36

66% of Wisconsin dairy farms ≤ 1.5 cows/ha (≥1.6 acres/cow) These farms are self sufficient in forage & grain

35

Powell et al., 2010

50

23

Denitrified N (kg/ha/y)

20

16

Pasture stocking rate impacts NUE and N balance

Rations and management impact feed NUE and N loss

Management Impacts Milk N:Manure N Ratios

The rations we feed impact N use, manure chemistry, and N loss

Protein supplement's impact

- Fecal N: Urinary N ratio
- Urea N in urine
- Ammonia emissions
- Nitrous oxide emissions
- Fecal N mineralization in soil
- Plant N uptake

As N intake exceeds requirement, feed NUE declines and urine N excretion increases

Excess dietary CP increases N in manure and urine

	13.6% CP	19.4% CP
Manure N g/cow/d	222	314
% Urine N	52	68
% Fecal N	48	32

. . . and also ammonia emissions

Partitioning Feed N Intake

(typical confinement dairy farm)

Urea in urine

.....greatest source of reactive N on dairy farms

How much feed N is consumed?

How much urea N is excreted?

Analyze for milk urea N (MUN)

Urinary urea N: Greatest N_r source on dairy farms

Relationships Dietary CP, MUN and UUN

Distribution of MUN Wisconsin dairy farms

(37,889 cows in 197 herds)

MUN, UUN and N emissions Wisconsin dairy farms

Feeding to achieve MUN of 12 to 10 mg/dL Reduces $\left\{ \begin{array}{l} NH_3 \text{ emissions by 35 to 42\%} \\ N_2O \text{ emissions by 18 to 21\%} \end{array} \right.$

Manure-NUE

Excreted N

Crops/Pasture N

Collection
Storage
Land application
Manure N credits

Manure NUE 20-40%

(of excreted N)

Manure collection

(n=54 Wisconsin dairy farms)

Uncollected manure on Wisconsin

dairy farms

- Manure N deposition 340 to 5470 kg/ha/y
- Some farmers rotate outside areas with pasture and/or crops

Powell et al., 2005

A farm's operational features impact N loss

Nitrogen use efficiency

2. Tradeoffs in N use and loss

TRADEOFF 1

Level of CP in dairy cow rations impacts UN excretion and NH₃ loss

.....but also manure N availability to plants

. . . crop yield and N uptake

TRADEOFF 2

More corn silage may feed more cows

... but may reduce manure N availability to corn

TRADEOFF 3

Tillage may reduce NH₃ emissionbut may increase NO₃ leaching

4-y field trial with corn Wisconsin (Powell et al., 2010)

% loss of total manure N applied	26.8	22.2	9.6
% as ammonia	20.0	10.9	4.9
% as nitrate	6.8	11.3	4.7

Summary

Improvements in NUE on dairy farms through management of livestock and their excreta

- Maintain good stocking rates
- Feed most balanced rations possible
- Collect manure and conserve urine
- Recognize and incorporate N use and N loss tradeoffs into N management planning

Impediments to enhanced NUE on dairy farms

Recognize factors that impact NUE

- Biological (N incorporation into products)
- Physical (climate, soils)
- Farm 'fixed' operational features (e.g., barns, manure storage)
- Excessive use (risk avoidance, wastage)

What realistic improvements in NUE can be expected from producers?

Establish N use baselines
 (using MUN, NUE, N balance)
 for monitoring progress towards
 desired change.

 What NUE targets are actually achievable?

Manage N losses?

Congratulations!

from your partners in research since 1981, the U.S. Dairy Forage Research Center

Madison

Prairie du Sac

Marshfield

